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Nulla è ancora, e qualcosa deve divenire. Il cominciamento non è il puro
nulla, ma un nulla da cui deve uscire qualcosa. Dunque anche nel comin-
ciamento è già contenuto l’essere. Il cominciamento contien dunque l’uno e
l’altro, l’essere e il nulla; è l’unità dell’essere col nulla; – ossia è un non essere,
che è in pari tempo essere, e un essere, che è in pari tempo un non essere.
Oltracciò l’essere e il nulla son nel cominciamento come diversi; poichè il com-
inciamento accenna a qualcos’altro; – è un non essere che si riferisce all’essere
come a un altro; ciò che comincia non è ancora; va, soltanto, all’essere. Il
cominciamento contien dunque l’essere come quello che si allontana dal non
essere, o lo toglie via considerandolo come contrapposto a lui.
Ma, inoltre, quello che comincia è già; in pari tempo però non è ancora. Nel
cominciamento dunque, questi opposti, l’essere e il non essere, sono immedi-
atamente uniti. Vale a dire che il cominciamento è la loro unità indifferente,
indistinta.

G.W.F. Hegel
Scienza della Logica
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Chapter 1

Some Descriptive Set Theory

We review first some of the basic concepts and results of descriptive set theory
in Polish spaces. References for the proofs of the theorems that we do not
give are Kuratowski [9, Vol. I, §33-39] and Kechris [7].

Throughout these notes, we denote by ω = {0, 1, . . . , } the first infinite
ordinal, let ω<ω be the set of all finite sequence in ω and let us denote by
ωω be the set of all sequence of elements of ω. If s = (s(0), ..., s(n − 1)) is
an element of ω<ω, we denote its length n by |s|. In particular the empty
sequence ∅ has length 0. For s = (s(0), ..., s(n−1)), t = (t(0), ..., t(k−1)) the
concatenation s a t is defined by

s a t = (s(0), ..., s(n− 1), t(0), ..., t(k − 1)).

For x ∈ ωω, and n ∈ ω in the sequel, we will consider the following notation

x|n = (x(0), . . . , x(n− 1))

Definition 1.1. A topological space is completely metrizable if it admits a
complatible metric d such that (X, d) is complete. A separable completely
metrizable space is called Polish.

Proposition 1.2. The following facts hold

i) The completion of a separable metric space is Polish;

ii) A closed subspace of a Polish space is Polish;

iii) The product of a sequence of completely metrizable (resp. Polish) spaces
is completely metrizable (resp. Polish);

iv) A subspace of a Polish space is Polish if and only if it is a Gδ (inter-
section of countable many open sets).

3



4 Some Descriptive Set Theory

Proof. (i), (ii) and (iii) are easy. Let us sketch the proof of (iv).

Let X be a Polish space, and let Y =
⋂
n Un with Un open in X. Let d be

a complete compatible metric for X and consider Fn = X \Un for all n ∈ ω.
Define a new metric on Y

d′(x, y) = d(x, y) +
∞∑
n=0

min

{
1

2n+1
,

∣∣∣∣ 1

d(x, Fn)
− 1

d(y, Fn)

∣∣∣∣}
It is easy to check that this is a metric compatible with the topology of Y .
We show that (Y, d′) is complete.

Let (yi)i be a Cauchy sequence in (Y, d′). Then it is Cauchy in (X, d).

Since (X, d) is complete, there exists y ∈ X such that yi
d−→ y. But also for

each n ∈ ω,

lim
i,j→∞

∣∣∣∣ 1

d(yi, Fn)
− 1

d(yj, Fn)

∣∣∣∣ = 0.

So, for each n ∈ ω, the sequence ( 1
d(yi,Fn)

)i converges in R.Therefore, 1
d(yi,Fn)

is bounded away from 0. Since 1
d(yi,Fn)

→ 1
d(y,Fn)

, we have that d(y, Fn) 6= 0

for all n ∈ ω. Thus, y 6∈ Fn, for all n ∈ ω; i.e. y ∈ Y and clearly yi
d′−→ y

In particular from iv) every open set in a Polish space is Polish. For
example, this last proposition tell us that {0, 1}ω = 2ω is a Polish space
(usually called as Cantor space).

If we consider ω with the discrete topology, from iii) we can say that ωω

is Polish too. This last space (called Baire space) plays an important rule in
the Polish spaces theory because of

Proposition 1.3. If X is a nonempty Polish space, then there exist a closed
set F ⊆ ωω and a continuous and bijection f : F −→ X. In particular, if X
is nonempty, there is a continuous surjection f̃ : ωω −→ X extending f .

Proof. The last assertion is clear. Let us prove the first one.

Since X are Polish spaces, in particular X =
⋃
n1∈ω C(n1) (where with

C(n1) we are denoting the ball of centers in X and radius 1). Since C(n1) is
a Polish space (because open), for the same sake, C(n1) =

⋃
n2∈ω C(n1, n2),

where with C(n1, n2) we are denoting the ball of centers in C(n1) and radius
1
2
. By induction we can define C(n1, ...., nk) so that

(a) C(n1, ..., nk−1) =
⋃
nk∈ω C(n1, ..., nk) =

⋃
nk∈ω C(n1, ..., nk),

(b) diam(C(n1, ..., nk)) <
1
k
.
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Let
D = {n ∈ ωω :

⋂
k∈ω

C(n|k) 6= 0}

Then we can define f : D −→ X by

f(n) =
⋂
k∈ω

C(n|k)

where we are using n = (n1, ..., nm, .....). Let us prove first the continuity.

Let ε > 0 arbitrary; by construction, we can suppose that the open in X
is C(n1, ..., nk1). Fix k = max{k1,

1
ε
}. Let n so that f(n) ∈ C(n1, ..., nk) and

we can consider the open of n in a such way

N (n1, ..., nk) = {m ∈ ωω : (m1, ...,mk) = (n1, ..., nk)}.

Then, we have f(m) ∈ C(n1, ..., nk) for each m ∈ N (n1, ..., nk), so

d(f(n), f(m)) ≤ diamC(n1, ..., nk) <
1

k
≤ ε ∀m ∈ N (n1, ..., nk)

That imply that f is continuous.

It is straightforward to check that f is injective and from (a) above
f(D) = X.

To finish, we need to show that D is a closed set in ωω.

Let us suppose (xn)n be a sequence in D such that xn
n→∞−→ x ∈ ωω. Given

ε > 0 there is N with diam(C(x|N)) < ε and M such that xn|N = x|N for
all n ≥ M , so that d(f(xn), f(xm)) < ε if m,n ≥ M . Therefore, (f(xn))n is
Cauchy, so that f(xn) −→ y ∈ X. Then f(x) = y. By definition of f we get
y ∈

⋂
nC(x|n) =

⋂
nC(x|n), so that x ∈ D.

For the Cantor space, we have

Theorem 1.4. Every nonempty compact metrizable space is a continuous
image of 2ω.

Proof. Let I = [0, 1], and let f : 2ω −→ I the map

f(x) =
∞∑
n=0

x(n)

2n+1
.

Then f maps 2ω continuously onto I. So

(xn)n 7−→ (f(xn))n
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maps 2ω
ω
, which is homeomorphic to 2ω, onto Iω.

We claim that every compact metrizable space is homeomorphic to a
compact subset of Iω.

Indeed, if (X, d) is a separable metric space with d ≤ 1 and (xn)n a dense
sequence of X, then

f : X −→ Iω

defined by

f(x) = (d(x, xn))n

is clearly continuous and injective. To see that f−1 : f(X) −→ X is also
continuous, let f(xm) → f(x). That means d(xm, xn) → d(x, xn) for all
n ∈ ω. Fix ε < 0 and consider n such that d(x, xn) < ε. Since d(xm, xn) →
d(x, xn) we can take M such that if m ≥ M then d(xm, xn) < ε. Then if
m ≥M , d(xm, x) < 2ε. Thus xm → x. This prove the claim.

From the last assertion, we have that there exists a closed set F ⊆ 2ω and
a continuous surjection of F onto X. But it is well known (see [7, Proposition
2.8]) that for every closed F of 2ω there always exists a continuous surjection
f : 2ω −→ F , such that f(x) = x for x ∈ F .

Let us recall some elementary notion.

A limit point of a topological space is a point that is not isolated, i.e.,
for every open neighborhood U of x there exists a point y ∈ U with y 6= x.
A space is perfect if all of its points are limit points. If P is a subset of a
topological space X, we call P perfect in X if P is closed and perfect in
its relative topology. A point x is called condensation point if every open
neighborhood of x is uncountable.

Theorem 1.5. Let X be a nonempty perfect Polish space. Then there is an
embedding of 2ω into X.

Proof. For each s ∈ 2<ω, we define a nonempty open subset Us of X by
induction of |s|.

Consider U∅ an arbitrary nonempty open set of X. Given Us, choosing
x 6= y in Us (since X is perfect), we define Usa0, Usa1 small enough balls
around x, y respectively, such that

(i) Us is open nonempty;

(ii) diam(Us) ≤ 2−|s|;

(iii) Usai ⊆ Us for s ∈ 2ω, i ∈ {0, 1}.
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Then for each x ∈ 2ω,
⋂
n Ux|n =

⋂
n Ux|n is a singleton (by completeness of

X). Let define

f : 2ω −→ X

by

x 7−→
⋂
n

Ux|n.

Then f is injective and continuous, therefore an embedding.

Theorem 1.6. (Cantor-Bendixson)
Let X be a Polish space. Then X can be uniquely written as X = P ∪C, with
P a perfect subset of X and C countable open.

Proof. Let

X∗ = {x ∈ X : x is a condensation point of X}

Let P = X∗ and C = X \ P . If {Un}n is an open basis of X, then C
is the union of all Un’s which are countable, so C is open countable. Of
course, P is closed. Let x ∈ P and U be a open neighborhood of x. Then
U is uncountable, so it contains uncountable many condensation points, and
U ∩ P is thus uncountable.

To prove the uniqueness, Let us suppose X = P1 ∪ C1 be another such
decomposition. Since P1 is perfect, then P ∗1 = P1 (this is because, if x ∈ P1

and U is a neighborhood of x, then U ∩ P1 is perfect nonempty Polish, thus
of cardinality 2ℵ0) and thus P1 ⊆ P .

Now, since C1 is a countable open, then C1 ⊆ C. Therefore P = P1 and
C = C1.

Corollary 1.7. Any uncountable Polish space contains a homeomorphic copy
of 2ω.

Remark 1.8. In the sequel, we will see that ωω can be identify with a Gδ

subset of 2ω (see the proof of Theorem 1.21). Therefore, any uncountable
Polish space contains a homeomorphic copy of ωω.

Definition 1.9. Let (X,Θ) be a topological space. The class of Borel set of
X is the σ-algebra generated by the open sets. We will denote by B(X) such
σ-algebra.
Let X, Y be topological spaces. A map f : X −→ Y is Borel if the inverse
image of a Borel (equivalently open or closed) set is Borel.
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For a Polish space X, in the sequel we will consider the following hierarchy

Σ0
1 = all open sets

Π0
1 = {X \ A A ∈ Σ0

1} = all closed sets

For each countable ordinal α < ω1,

Σ0
α = {∪nAn : each An is in Π0

αn
, for some αn < α}

and
Π0
α = {X \ A A ∈ Σ0

α}

In particular, we have
Σ0

2 = Fσ

Π0
2 = Gδ

Σ0
3 = Gδσ

Π0
3 = Fσδ.

Note that, a set A is Borel if and only if there exists α < ω1 such that A
lies in Σ0

α. Moreover, for each countable ordinal α < ω1 another class in the
hierarchy is defined

∆0
α = Σ0

α ∩ Π0
α.

In particular
∆0

1 = all clopen sets.

A subset P ⊆ X of a Polish space is called analytic if it is the continuous
image of a Borel set, i.e. there is B ⊆ Y a Borel subset of a Polish space Y
and f : Y → X continuous, with f(B) = P .

The complements of analytic sets are called coanalytic.

Therefore, we can continue our hierarchy by

Σ1
1 = all analytic sets

Π1
1 = all coanalytic sets.

and
∆1

1 = Σ1
1 ∩ Π1

1

Proposition 1.10. The following facts hold

1. The analytic sets are closed under countable unions and intersections,
and Borel images and preimages.
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2. The coanalytic sets are closed under countable unions and intersections
and Borel preimages.

3. The Borel sets are closed under complements, countable unions and
intersections, as well as Borel preimages.

Of great importance for us it is the fact that there are analytic (or coana-
lytic) non-Borel sets. We will see many examples of such sets later, but there
are a couple of other ones occurring in analysis: the set of differentiable func-
tions in C([0, 1]) is Π1

1 but not Borel (see [12]), and so is the set of functions
in C(T) with everywhere convergent Fourier series (see [1]).

We are in the position to see the main results in this topic.

Lemma 1.11. Let (X,Θ) be Polish and F ⊆ X closed. Let ΘF be the topology
generated by Θ ∪ {F}; i.e., the topology with basis Θ ∪ {U ∩ F : U ∈ Θ}.
Then ΘF is Polish, F is clopen in ΘF , and B(ΘF ) = B(Θ).

Proof. Easy.

Lemma 1.12. Let (X,Θ) be Polish and let (Θn)n be a sequence of Polish
topologies on X with Θ ⊆ Θn, for each n ∈ ω. Then the topology Θ∞ generated
by
⋃
n Θn is Polish. Moreover, if Θn ∈ B(Θ), then B(Θ∞) = B(Θ).

Proof. Let Xn = X for n ∈ ω. Consider the map ϕ : X −→
∏

nXn given by

ϕ(x) = (x, x, . . .).

Note first that ϕ(X) is closed in
∏

n(Xn,Θn). Indeed, if (xn) 6∈ ϕ(X), then
for some i < j, xi 6= xj, so let U, V be disjoint open in Θ (thus also open in
Θi,Θj resp.) such that xi ∈ U , xj ∈ V . Then

(xn)n ∈ X0 × · · · ×Xi−1 × U ×Xi+1 × · · · ×Xj−1 × V ×Xj+1 × · · ·

where the right hand side is in the complement of ϕ(X).

So ϕ(X) is Polish. But ϕ is a homeomorphism of (X,Θ∞) with ϕ(X), so
(X,Θ∞) is Polish.

If Θn ∈ B(Θ) and {U (n)
i }i∈ω is a basis for Θn, then {U (n)

i }i,n∈ω is a subbasis
for Θ∞, so Θ∞ ⊆ B(Θ) as well.

Consider now the class S of subsets A of X for which there exists a Polish
topology ΘA ⊇ Θ with B(ΘA) = B(Θ) and A clopen in ΘA.

Let us show that Θ ⊆ S and S is a σ-algebra. The first asserion follows
by 1.11. Of course, S is closed under complements. Finally, let {An} ⊆ S.
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Let Θn = ΘAn satisfy the above condition for An. Let Θ∞ be as in 1.12. Then
A = ∪nAn is open in Θ∞ and one more application of 1.11 completes the
proof.

As consequence, we have the following fundamental fact about Borel sets
in Polish spaces.

Theorem 1.13. Let (X,Θ) be a Polish space and A ⊆ X a Borel set. Then
there is a Polish topology ΘA ⊇ Θ such that B(ΘA) = B(Θ) and A is clopen
in ΘA.

Theorem 1.14. (Lusin-Souslin)
Let X be Polish and A ⊆ X be Borel. There is a closed set F ⊆ ωω, and
a continuous bijection f : F → A. In particular, if A 6= ∅, there is also a
continuous surjection f̃ : ωω → A extending f .

Proof. Enlarge the topology Θ of X to a Polish topology ΘA in which A is
clopen, thus Polish. By 1.3, there is a closed set F ⊆ ωω and a bijection
f : F −→ A continuous for ΘA|A. Since Θ ⊆ ΘA, f : F −→ A is continuous
for Θ as well.

The last Theorem precisely means that

B(X) ⊆ Σ1
1.

The next result tell us that implication is strict.

Theorem 1.15. (Souslin)
Let X be an uncountable Polish space. Then there exists always an analytic
set of X which is not Borel.

Proof. Let Γ be a class of sets in arbitrary Polish spaces. By Γ(X) we denote
the subsets of X in Γ. If U ⊆ ωω ×X, we call U ωω-universal for Γ(X) if U
is in Γ(ωω ×X) and Γ(X) = {Uy : y ∈ ωω}.

First notice that there exists a ωω-universal set for Σ0
1(ωω). Indeed, enu-

merate ω<ω in a sequence (sn)n and put

(y, x) ∈ U ⇐⇒ x ∈
⋃
{Nsi : y(i) = 0}

Since ωω×ωω is homeomorphic to ωω, it follows that there is an ωω-universal
set for Σ0

1(ωω ×ωω), and by taking complements there is an ωω-universal set
F for

∏0
1(ωω × ωω). We now claim that A = {(y, x) : ∃z, (y, x, z) ∈ F} is

ωω-universal for Σ1
1(ωω). Since projection is continuous, A and all sections Ay

are Σ1
1. Conversely, if A ⊆ ωω is Σ1

1, there is closed F ⊆ ωω and continuous
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surjection f : F → A (F could be empty). Let G = graphf−1 so that G is
closed in ωω × ωω and

x ∈ A⇐⇒ ∃z : (x, z) ∈ G.

Let y ∈ ωω such that G = Fy. Then A = Ay.
Now, A cannot be Borel. Indeed, in such case, Ac would be Borel too, so

A = {x : (x, x) 6∈ A} would be Borel and thus analytic. So, for some y0,
A = Ay0 , i.e.

(x, x) 6∈ A ⇐⇒ (y0, x) ∈ A.

Take x = y0 to get a contradiction.

Since every uncountable Polish space X contains a homeomorphic copy
of ωω (see Remark 1.8), it follows that there is an analytic set of X which is
not Borel as well.

The following result is of fundamental importance.

Theorem 1.16. (The Lusin Separation Theorem)
Let X be a Polish space and let A,B ⊆ X be two disjoint analytic sets. Then
there is a Borel set C ⊆ X separating A from B, i.e., A ⊆ C and C ∩B = ∅.

Proof. Assuming , without loss of generality, that A,B are nonempty, let
f : ωω −→ A, g : ωω −→ B be continuous surjections.

Put As = f(Ns), Bs = g(Ns). Then

As =
⋃
m

Asam, Bs =
⋃
n

Bsan.

Suppose that Asam, Bsam, for each m,n ∈ ω are Borel-separating, i.e. there
exists Rm,n Borel separating Asam, Bsam, then R = ∪m ∩n Rm,n separates
As, Bs.

If A,B are not Borel-separating then, for what we have said, we can re-
cursively define x(n), y(n) ∈ ω such that Ax|n, By|n are not Borel-separating
for each n ∈ ω. Then f(x) ∈ A, g(y) ∈ B, so f(x) 6= g(y). Let U, V be
disjoint open sets with f(x) ∈ U, g(y) ∈ V . By the continuity of f and g, if
n is large enough we have f(Nx|n) ⊆ U, g(Ny|n) ⊆ V , so U separates Ax|n
from By|n, a contradiction.

Corollary 1.17. Let X be a Polish space and (An)n be a pairwise disjoint
sequence of analytic sets. Then there are pairwise disjoint Borel sets Bn, with
Bn ⊇ An.

As consequence, we have a celebrate theorem
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Theorem 1.18. (Souslin’s Theorem)
If X is a Polish space, then

B(X) = ∆1
1(X)

Proof. Suppose that A ∈ ∆1
1(X), then A and Ac are two disjoint analytic

sets of X. It is enough to separate them by a Borel.

It is now immediate the following

Proposition 1.19. f : X −→ Y has Borel graph if and only if f is Borel.

Proof. For V ⊆ Y open, we have

f(x) ∈ V ⇐⇒ ∃y [f(x) = y and y ∈ V ]

⇐⇒ ∀y [f(x) = y =⇒ y ∈ V ]

One of the many important consequences of the Suslin and Lusin Theo-
rems is that the 1− 1 image of a Borel set by a Borel function is also Borel,
i.e.

Theorem 1.20. If B is a Borel subset of a Polish space X, f : X −→ Y is a
Borel map from X into a Polish space Y and f is 1−1 on B, then C = f(B)
is also Borel.

Proof. By 1.14, we can assume that X = ωω and B closed.

Let Bs = f(B ∩Ns) for s ∈ ω<ω. Since f |B is injective, we have

1. B∅ = B;

2. Bs =
⋃
nBsan;

3. Bsai ∩Bsaj = ∅, if s ∈ ωω and i 6= j;

4. Bs is analytic.

By 1.17, we can find Borel sets B′s such that

B′∅ = Y and Bs ⊆ B′s

We finally define by induction on |s|, Borel sets B∗s such that

(a) B∗∅ = B′∅ = Y ;
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(b) B∗sai ∩B∗saj = ∅, if s ∈ ωω and i 6= j;

(c) B∗(n0) = B′(n0) ∩B(n0);

(d) B∗(n0,...,nk) = B′(n0,...,nk) ∩B∗(n0,...,nk−1) ∩B(n0,...,nk).

Then it is not hard to show by induction on k that

B(n0,...,nk) ⊆ B∗(n0,...,nk) ⊆ B(n0,...,nk).

We claim that
f(B) =

⋂
k

⋃
s∈ωk

B∗s

which shows that f(B) is Borel.

If x ∈ f(B), let a ∈ B such that f(a) = x, so that x ∈
⋂
k Ba|k. Thus we

have x ∈
⋂
k B
∗
a|k.

Conversely, suppose x ∈
⋂
k

⋃
s∈ωk B∗s , then there is a unique a ∈ ωω such

that x ∈
⋂
k B
∗
a|k. Then also x ∈

⋂
k Ba|k; so, in particular, Ba|k 6= ∅ for all k

and thus B ∩Na|k 6= ∅ for all k. Which means that a ∈ B, since B is closed.
So f(a) ∈

⋂
k Ba|k.

We claim that f(a) = x. Otherwise, since f is continuous, there is a
neighborhood Na|k0 of a with f(Na|k0) ⊆ U , where U is an open such that
x 6∈ U . Then

x 6∈ f(Na|k0) ⊇ Ba|k0 ,

a contradiction.

The following theorem will be very useful in the future

Theorem 1.21. (Representation Theorem for Analytic Set) Let X be a Pol-
ish space and let P ⊆ X be an analytic set. Then there is a closed set
F ⊆ X × ωω such that

x ∈ P ⇐⇒ ∃ε ∈ ωω : (x, ε) ∈ F ;

i.e. every Σ1
1-set is the projection of a closed set in X × ωω (the converse is

true by definition).

Also, there is a Gδ-set G ⊆ X × 2ω such that

x ∈ P ⇐⇒ ∃ε ∈ 2ω : (x, ε) ∈ G;

(One cannot replace here Gδ by closed, since 2ω is compact and projection of
compact set are compact).
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Proof. By standard facts,

every non-empty analytic set is the continuous image of ωω

So, let f : ωω −→ X be continuous such that f(ωω) = P (provided P 6= ∅,
since otherwise the result is trivial). Then let us define F ⊆ X × ωω by

(x, ε) ∈ F ⇐⇒ f(ε) = x.

For the second statement notice that ωω can be identify with a Gδ subset of
2ω as follows. Let

〈·, ·〉 : ω × ω −→ ω

be a 1 − 1 correspondence and assign to each ε ∈ ωω the element ε∗ ∈ 2ω

given by

ε∗(〈n,m〉) = 0 if and only if ε(n) = m.

The map ε 7−→ ε∗ is a homomorphism between ωω and the following Gδ

subset of 2ω

{δ ∈ 2ω : for all n there is a unique m with δ(〈n,m〉) = 0}

For the future, we will need the following tools

Definition 1.22. Let X be a Polish space.

1. A subset P of X is called Π1
1-hard if for any Polish space Y and any

Q ∈ Π1
1(Y ) there exists a Borel function f : Y −→ X such that Q =

f−1(P ).

2. A subset P of X is called Π1
1-complete if P is Π1

1-hard and P ∈ Π1
1(X).

Remark 1.23. Note that any Π1
1-hard subset of a Polish space, is not

analytic, thus not Borel.

Indeed, if there is a Π1
1-hard subset of a Polish space which is also analytic,

then every coanalityc set of any Polish space should be Borel preimage of an
analytic set. By Proposition 1.10, any coanalytic set should be also analytic,
and then (by Souslin’s Theorem 1.18) Borel. But the last assertion contradict
Theorem 1.15.

A measurable space is a pair (X,S) where X is a set and S is a σ-algebra
on X.
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A measurable space (X,S) is said to be a standard Borel space if there
exists a Polish topology τ on X such that the Borel σ-algebra of (X, τ)
coincide with the σ-algebra S.

A basic example of standard Borel space is the Effros-Borel structure.
Precisely, for every Polish space X by F (X) we denote the set of all closed
subsets of X. We endow F (X) with the σ-algebra S generated by the family

{ {F ∈ F (X) : F ∩ U 6= ∅} : U is an open subset of X}

The measurable space (F (X), S) is called the Effros-Borel space of F (X).

Before to enunciate the next theorem, let us recall that, if X is a topolog-
ical space, on K(X) (the space of all compact subsetes of X) we equip the
Vietoris topology, i.e., the one generated by the sets of the form

{K ∈ K(X) : K ⊆ U}
{K ∈ K(X) : K ∩ U 6= ∅}

Notice that, if (X, d) is a metric space the Hausdorff metric on K(X),
defined by

dH(K,L) =


0, if K = L = ∅;
1, if exactly on of K,L is ∅;
max{maxx∈K d(x, L) , maxx∈L d(x,K)} if K,L 6= ∅.

Then the Hausdorff metric is compatible with the Vietoris topology. More-
over, if D is a countable dense of X, then Kf (D) = {K ⊆ D : K is finite}
is also a countable dense of K(X). We have showed the following

Proposition 1.24. If X is a Polish space, so is K(X).

Theorem 1.25. If X is a Polish, then the Effros-Borel space of F (X) is
standard.

Proof. Let X be a compactification of X. Then the map

F ∈ F (X) 7−→ F ∈ K(X),

where F denotes the closure of F in X is injective, since F = F ∩ X. We
claim that G = {F : F ∈ F (X)} is Gδ in K(X).

Indeed, for K ∈ K(X), K ∈ G⇔ K ∩X is dense in K.

If X =
⋂
n Un, where Un is open in X, and letting {Vm}m a basis for X,

we have by the Baire category Theorem

K ∈ G⇐⇒ ∀n (K ∩ Un is dense in K)
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⇐⇒ ∀n ∀m (K ∩ Um 6= ∅ ⇒ K ∩ (Vm ∩ Un) 6= ∅).

Thus G is Polish.

Transfer back to F (X) its topology via the bijection F 7−→ F to get a
Polish topology T on F (X). We have to verify that the Borel space of this
topology is the Effros-Borel space.

It is easy to verify that the sets {K ∈ K(X) : K ∩ U 6= ∅}, for U open
in X, generate B(K(X)) respect to T . But

{F ∈ F (X) : F ∩ U 6= ∅} = {F ∈ F (X) : F ∩ (U ∩X) 6= ∅}

so these are exactly the generators of the Effros-Borel structure.

Let us also recall the following useful result (see also [18, Theorem 5.2.1]).

Theorem 1.26. (Kuratowski and Ryll-Nardzewski Selection Theorem for
F (X))
Let X and Y be Polish spaces and F : Y −→ F (X) a Borel map such that
F (y) 6= ∅ for every y ∈ Y . Then there exists a sequence fn : Y −→ X of
Borel selectors of F (i.e. fn(y) ∈ F (y) for every n ∈ ω and y ∈ Y ) such that
the sequence (fn(y))n is dense in F (y) for all y ∈ Y .

Corollary 1.27. Let X be a Polish space. There is a sequence of Borel
functions dn : F (X) −→ X, such that for every F ∈ F (X), {dn(F )}n is
dense in F .

Proof. Since X is Polish, by Theorem 1.3 there exists a continuous (and
open) surjection f : ωω −→ X. Let {Us}s∈ω<ω the open balls that played in
the construction of f .

For a given nonempty F ∈ F (X), let

TF = {s ∈ ω<ω : F ∩ Us 6= ∅}

and note that TF is a nonempty tree with the property that every s ∈ TF has
a proper extension t ' s, t ∈ TF (a tree with such property is said pruned).

In particular [TF ] 6= ∅. We define the leftmost branch of TF denoted by
aTF by

aTF (n) = the least element m of ω such that [(TF )(aT |n)am] 6= ∅

Let d(F ) = f(aF ) so that d(F ) ∈ F . Define also d(∅) = x0, some fixed
element in X.
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Now the function g : F (X) \ {∅} −→ ωω given by g(F ) = aF is Borel.
Indeed, given a basic open set Ns, s ∈ ωn, we have

g(F ) ∈ Ns ⇐⇒ F ∩ Us 6= ∅ and ∀t ∈ ωn (t <lex s⇒ F ∩ Ut = ∅),

where <lex is the lexicographical ordering on ωn. So d is Borel too.

Fix now a basis {Vn}n of nonempty open set in X. By the above argument,
we can find, for each n, a Borel function d′n : F (X) −→ X such that d′n(F ) ∈
F ∩ Vn if F ∩ Vn 6= ∅. Finally, let

dn(F ) =

{
d′n(F ), if F ∩ Vn 6= ∅;
d(F ), if F ∩ Vn = ∅.
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Sembra che tutte le grandi cose abbiano bisogno, per iscriversi con eterne
esigenze nel cuore dell’umanità, di passare prima sulla terra sotto la forma
di maschere mostruose e terrificanti ...

F. Nietzsche
Al di là del bene e del male
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Chapter 2

Few Facts about Trees

Let Λ be a set. With Λ<ω we denote the set of all finite sequence of elements
of Λ, and with Λω the set of all infinite sequence of elements of Λ. Of course,
if Λn is the set of all sequence of Λ with length n, then

Λ<ω =
⋃
n

Λn

If s, t ∈ Λ<ω we denote by
s ⊆ t

the extension order of finite sequence, if |s| ≤ |t| (length of s less than length
of t), and for each i ≤ |s|, s(i) = t(i). In this case we say also that s is an
initial segment of t and write

s = t|m with m = |s|.

Note that ∅ ⊆ s, for all s. Similarly if ε ∈ Λω is an infinite sequence we write

s ⊆ ε or s = ε|m

where m = |s|, if s = (ε(0), . . . , ε(m− 1)).

Let T be a subset of Λ<ω. We say that T is a tree if

t ∈ T and s ⊆ t implies s ∈ T

For a tree T on Λ, a branch through T is an ε ∈ Λω such that for all n ∈ ω,

ε|n = (ε(0), ..., ε(n− 1)) ∈ T.

We denote by

[θ] = {ε ∈ ωω : ε is a branch through θ}

21
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The body of θ.

We call θ well founded if [θ] = ∅, i.e. θ has no branches. Otherwise, we
will call θ ill founded.

A first example of tree is ω; it is a tree on ω. In this case [ω] = {ω}.
Another simply example of tree is ω<ω. This last tree, the tree of all finite

sequence of ω will be denote by T , and the set of all trees on ω, i.e. the set
of subtrees of T , is denoted by T . A tree θ ∈ T can be identified with its
characteristic function which is a member of the Polish space {0, 1}ω<ω

=
2ω

<ω
homeomorphic to 2ω (i.e. the Cantor set). The set of all trees is then

easily a closed subset of 2ω
<ω

. The following is a classical fact.

Theorem 2.1. Let WF be the set of well founded trees on T . Then WF is
a Π1

1-complete set (in 2ω
<ω

).

Proof. Let X be a fixed Polish space and P ∈ Π1
1(X). By 1.21, let F ⊆ X×ωω

be a closed such that

x 6∈ P ⇐⇒ ∃ε ∈ ωω (x, ε) ∈ F

Assign now to each x ∈ X the tree

T (x) = {s ∈ ω<ω : ∃V open inX with x ∈ V, diamV ≤ 2−|s| and (V×Ns)∩F 6= ∅}

Then {x ∈ X s ∈ T (x)} is open in X, for all s ∈ ω<ω. Therefore the function

x
f7−→ T (x)

is a Borel from X into 2ω
<ω

.

We claim now that

(∗) x 6∈ P ⇐⇒ T (x) 6∈ WF ,

thus P = f−1(WF), so WF is Π1
1-complete.

Indeed, if x 6∈ P , let ε ∈ ωω such that (x, ε) ∈ F . Then ε is a branch
through T (x). Conversely, if ε is a branch through T (x) let, for each n ∈ ω,
εn ∈ ωω and xn ∈ X such that

εn|n = ε|n, (xn, εn) ∈ F and d(xn, x) ≤ 2−n.

Then xn → x, εn → ε; so (x, ε) ∈ F and by construction x 6∈ P .

To see that WF is Π1
1 notice that

T ∈ WF ⇐⇒ ∀σ ∈ ωω ∃k ∈ ω with σ|k 6∈ T.
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A direct consequence of Remark 1.23 is the following

Corollary 2.2. WF is coanalytic but not Borel in the Polish space T equipped
with the topology inherited from 2ω

<ω
.

Let us also recall the hight of a tree.

Let Λ be an infinite set and let κ = |Λ|. For every well founded tree T on
Λ we define

T ′ = {s ∈ T : ∃t ∈ T with s $ t} ∈ WF(Λ).

By transfinite recursion, we define the iterated derivatives T ξ, ξ < κ+ by

T 0 = T, T ξ+1 = (T ξ)′ and T λ =
⋂
ξ<λ

T ξ if λ is limit

Notice that if T ξ 6= ∅, then T ξ+1 & T ξ. It follows that the transfinite
sequence (T ξ)ξ<κ+ is eventually empty (see 4.1 below). The hight ht(T ) of
T is defined to be the least ordinal ξ such that T ξ = ∅. If T is ill founded,
then by convention we set ht(T ) = κ+. In particular, if Λ is countable, then
ht(T ) < ω1 for every T ∈ WF(Λ) while ht(T ) = ω1 for every T ill founded
on Λ.

Let S and T be tree on Λ1 and Λ2 respectively. A map φ : S −→ T is
called monotone if for every s1, s2 ∈ S with s1 & s2 we have φ(s1) & φ(s2).
The following fact is quite useful.

Proposition 2.3. Let S and T be trees on ω. Then ht(S) ≤ ht(T ) if and
only if there exists a monotone map φ : S −→ T .

Proof. Suppose a such monotone map exists. If T is ill founded, then ob-
viously we have ht(S) ≤ ht(T ). So, assume that T is well founded. We see
that for every countable ordinal ξ and every s ∈ Sξ we have φ(s) ∈ T ξ. That
would implies ht(S) ≤ ht(T ).

Conversely, assume that ht(S) ≤ ht(T ). If T is ill founded, then choose
σ ∈ [T ]. For every s ∈ S we let φ(s) = σ||s|. It is clear that φ is monotone.

Suppose now that T is well founded, we construct φ as follows:

we set φ(∅) = ∅. Let k ∈ ω and assume we have already defined φ(s) for
all s ∈ S with |s| ≤ k so that

(∗) ∀ξ < ω1, s ∈ Sξ ⇒ φ(s) ∈ T ξ

Let w ∈ S with |w| = k+1. Then there exists s ∈ S with |s| = k, n ∈ ω such
that w = s a (n). Let t = φ(s). By construction, we see that there exists
m ∈ ω such that, setting φ(w) = t a m, property (∗) is satisfied for w and
φ(w). It is easily seen that φ is monotone.
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Siamo un segno che non ha significato, siamo senza dolore, e abbiamo
quasi perso il linguaggio in terra straniera.

F. Hölderlin
Liriche
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Chapter 3

Rank Theory

Definable ranks are fundamental tolls in Descriptive Set Theory. We will
treat some property of ranked classes valid for Π1

1. Before to define the main
tool of this section, we need to recall the following

Definition 3.1. Let X be a set and ≺ a relation on X (i.e. ≺⊆ X×X). We
say that ≺ is well founded if every nonempty subset Y ⊆ X has a ≺-minimal
element.

This is equivalent to assert that there is no infinite decreasing chain.

By recursion, we can define the rank function

ρ≺ : X −→ ORD (where ORD is the class of ordinals)

given by

ρ≺(x) = sup{ρ≺(y) + 1 y ≺ x}

In particular ρ≺(x) = 0 if x is minimal. Note also that ρ≺ maps X onto some
ordinal α, which is < card(X)+. Let us define the rank of ≺ by

ρ(≺) = sup{ρ≺(x) + 1 : x ∈ X}

Theorem 3.2. Let X be a Polish space and ≺ an analytic well founded
relation on X. Then ρ(≺) is countable.

Proof. We can clearly assume that X = ωω. Let us define the tree T≺ on ωω

associate with ≺

(x0, . . . , xn−1) ∈ T≺ ⇐⇒ xn−1 ≺ . . . ≺ x1 ≺ x0

Of course, (x) ∈ T≺ for all x ∈ X.
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Since ≺ is well founded, it is easy to see that the associate tree T≺ is
well founded as well, and ρ(≺) = ht(T≺). So it is enough to show that
ht(T≺) < ω1. This will be done by proving that there exist a countable set
W , a well founded relation ≺∗ on W and an order preserving map from
(T≺ \ {∅},') into (W,≺∗).

Let S be a pruned tree on ω × ω × ω such that

x ≺ y ⇐⇒ ∃z with (x, y, z) ∈ [S],

see [7, Proposition I.2.4].

Let W be defined as the set of all sequences of the form

w = ((s0, t0, u0), . . . , (sn−1, tn−1, un−1))

where (si, ti, ui) ∈ S and si = ti+1 for all i < n− 1.

Let us define ≺∗ on W by

w ≺∗ w′ ⇐⇒ |w| < |w′|
and

∀i < |w| (s′i, t
′
i, u
′
i) ' (si, ti, ui).

We claim that the relation ≺∗ is well founded.

Otherwise, let wn =
(
(sn0 , t

n
0 , u

n
0 ), . . . , (snkn−1, t

n
kn−1, u

n
kn−1)

)
be such that

wn+1 ≺∗ wn. Then kn ↑ ∞. Letting ln = ht(sni ) (= ht(tni ) = ht(uni ), for
i < kn), also ln ↑ ∞, and there are x0, x1, . . . in ωω and z0, z1, . . . in ωω such
that for all n,

tn0 ⊆ x0, s
n
0 = tn1 ⊆ x1, s

n
1 = tn2 ⊆ x2, . . . and un0 ⊆ z0, u

n
1 ⊆ z1, . . .

Thus (x1, x0, z0) ∈ [S], (x2, x1, z1) ∈ [S], . . .; i.e. that is x1 ≺ x0, x2 ≺
x1, . . ., which is a contradiction.

Now, notice that if x ≺ y, the section tree

S(x, y) = {s ∈ ω<ω : (x||s|, y||s|, s) ∈ S}

is not well founded, so let hx,y ∈ [S(x, y)].

Finally, let us define
f : T≺ \ {∅} −→ W

given by
f((x)) = ∅
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and for n ≥ 2,

f(x0, . . . , xn−1) =
(
(x1|n, x0|n, hx1,x0|n), . . . , (xn−1|n, xn−2|n, hxn−1,xn−2|n)

)
Then f(x0, . . . , xn−1, xn) ≺∗ f(x0, . . . , xn−1) for any n ≥ 1, so our proof

is complete.

Definition 3.3. Let X be a Polish space and B be a Π1
1 subset of X. A

map φ : B −→ ORD is said to be a Π1
1-rank on B if there are relations

≤Σ, ≤Π⊆ X × X in Σ1
1 and Π1

1 respectively, such that for every y ∈ B we
have

φ(x) ≤ φ(y)⇐⇒ x ≤Σ y

⇐⇒ x ≤Π y

Here we have some basic property of Π1
1-rank

Theorem 3.4. Let X be a Polish space, B a Π1
1 subset of X and φ : B −→

ORD a Π1
1-rank on B. Let denote by α = φ(B). Then the following hold

(0) α ≤ ω1;

(i) For every countable ordinal ξ the set Bξ = {x ∈ B : φ(x) ≤ ξ} is
Borel;

(ii) B is Borel if and only if sup{φ(x) x ∈ B} < ω1;

(iii) For every analytic subset A of B, we have sup{φ(x) x ∈ A} < ω1.

Proof. (i) Follows from Theorem 1.18 (i.e. ∆1
1(X) = B(X)).

(0) For x ∈ B, let us define the relation

y ≺ z ⇐⇒ φ(y) ≤ φ(x)

and

φ(z) ≤ φ(x)

and

φ(y) < φ(z).

Then the relation ≺ is Borel and well founded, so φ(x) = ρ(≺) < ω1 by
Theorem 3.2. So α ≤ ω1.

(ii) If B is Borel, then the relation

y ≺′ z ⇐⇒ y, z ∈ B and φ(y) < φ(z)
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is Borel and ρ(≺′) = sup{φ(x) x ∈ B} < ω1. The converse is clear.

(iii) Suppose that sup{φ(x) x ∈ A} = ω1, then by (ii) B cannot be Borel.
We show that there is x0 ∈ B such that φ(x) ≤ φ(x0) for all x ∈ A, and by
(0) we get a contradiction.

Indeed, if not

x ∈ B ⇐⇒ ∃y ∈ A and φ(x) ≤ φ(y)

⇐⇒ ∃y ∈ A and x ≤Σ y.

Therefore B should be also analytic. By Theorem 1.18 we get B Borel
(OOPS!!!).

The next Proposition shows that Π1
1-rank can be defined only using two

analytic relations

Proposition 3.5. Let X be a Polish space, B a Π1
1 subset of X and φ :

B −→ ω1.

Then φ is a Π1
1-rank on B if and only if there are relations ≤′Σ, <′Σ⊆

X ×X both in Σ1
1 such that for every x ∈ B we have

φ(x) ≤ φ(y)⇐⇒ x ≤′Σ y

and
φ(x) < φ(y)⇐⇒ x <′Σ y

Proof. It is enough to note that, if ≤Σ, ≤Π are the analytic and coanalytic
relation in the definition of Π1

1-rank, we have just to choose ≤′Σ=≤Σ and

x <′Σ⇐⇒ x ≤Σ and not y ≤Π x

Let us see a first important example of Π1
1-rank.

Theorem 3.6. The map ht :WF −→ ω1 defined by

T 7−→ ht(T )

is a Π1
1-rank on WF .

Proof. We have already seen in Theorem 2.1 that WF is Π1
1.

We define

S ≤Σ T ⇐⇒ T 6∈ WF or
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S, T ∈ WF and ht(S) ≤ ht(T )

and

S <Σ T ⇐⇒ T 6∈ WF or

S, T ∈ WF and ht(S) < ht(T )

By Proposition 2.3

S ≤Σ T ⇐⇒ ∃f : S → T monotone

and so the relation ≤Σ is Σ1
1.

For every T ∈ T and every λ ∈ ω, we set

Tλ = {t ∈ T : (λ) a t ∈ T}

Observe that if T ∈ WF then ht(T ) = sup{ht(Tλ) : λ ∈ ω}, while if T is
ill founded, then there exists λ ∈ ω such that Tλ is also ill founded. Invoking
again Proposition 2.3, we have

S <Σ T ⇐⇒ ∃λ ∈ ω and ∃f : S → Tλ monotone.

Then <Σ is also Σ1
1.

Definition 3.7. Let X and Y be Polish spaces, A ⊆ X and B ⊆ Y . We
say that A is (resp.Borel)-reducible to B if there exists a continuous (resp.
Borel) map f : X −→ Y such that f−1(B) = A.

The following it is easy to proof

Lemma 3.8. Let X and Y be Polish spaces, A ⊆ X and B ⊆ Y . Assume
that A is Borel reducible to B via the Borel map f : X −→ Y . Assume,
moreover, that B is Π1

1 and φ : B −→ ω1 is a Π1
1-rank on B. Then A is Π1

1

and the map ψ : A −→ ω1 defined by ψ(x) = φ(f(x)) is a Π1
1-rank on A.

Theorem 3.9. Let Λ be a countable set and A be a subset of Λω. Then A is
Σ1

1 if and only if there exists a tree T on Λ× ω such that

A = p[T ] = {σ ∈ Λω : ∃τ ∈ ωω with (σ, τ) ∈ [T ]}.

Proof. See [7].

The following is fundamental in Rank Theory.

Theorem 3.10. Let X be a Polish space and B ⊆ X be a Π1
1 set. Then there

exists a Π1
1-rank on B.
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Proof. By the previous lemma, it is enough to find Borel reduction of B to
WF . Of course, we can suppose that X = ωω. By Theorem 3.9, there exists
a tree T on ω × ω such that Bc = p[T ]. For every σ ∈ ωω we let

T (σ) = {t ∈ ω<ω : (σ||t|, t) ∈ T} ∈ T .

It is easy to see that the map f : ωω −→ T defined by f(σ) = T (σ) is
continuous. To finish, observe that

σ 6∈ B ⇐⇒ ∃τ ∈ ωω with (σ, τ) ∈ [T ]

⇐⇒ T (σ) is ill founded

and so f−1(WF) = B.
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Immagine può essere anzitutto la veduta di un determinato ente, in
quanto manifesto nella sua semplice-presenza. Questo ente offre una veduta
anblick. In senso derivato, “immagine” può inoltre significare sia la veduta
che ricalca una semplice presenza (copia) o, meglio, riproduce un ente che
non è piú presente, sia la veduta che prospetta un ente ancora da produrre.

M. Heidegger
Kant e il problema della metafisica
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Chapter 4

Derivatives

Let us start with the following general observation

Theorem 4.1. Let X be a second countable topological space and (Fα)α<ρ a
strictly increasing or decreasing transfinite sequence of closed (or open) set;
i.e. α < β =⇒ Fα ' Fβ.

Then ρ is a countable ordinal.

Proof. Let us suppose that (Fα)α<ρ is a strictly decreasing transfinite se-
quence of closed set. Let {Un}n be an open basis for X.

To each closed set F ⊆ X let us associate the set of numbers

N(F ) = {n ∈ ω : Un ∩ F 6= ∅}

It is enough to note that the map

F 7−→ N(F )

is injective and increasing (i.e., F ⊆ G =⇒ N(F ) ⊆ N(G)). Therefore, a
strictly decreasing transfinite sequence of closed (Fα)α<ρ, it will produce a
strictly decreasing transfinite sequence of subsets of ω. Thus, ρ has to be
countable.

A typical example is the Cantor-Bendixson derivative on the set of all
compact subset of X, denoted by K(X). Precisely, for K ∈ K(X) Cantor-
Bendixson derivative of K is

K ′ = {x ∈ K : x is a limit point of K}

More in general,
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Definition 4.2. Let X be a Polish space. A map D : K(X) −→ K(X) is
said to be a derivative on K(X) if

(i) D(K) ⊆ K, for all K ∈ K(X);

(ii) D(K1) ⊆ D(K2), whenever K1, K2 ∈ K(X) with K1 ⊆ K2.

Given a derivative D and K ∈ K(X) by transitive recursion we can define
the iterated derivatives on K by

D0(K) = K, Dξ+1(K) = D(Dξ(K)) and Dλ(K) =
⋂
ξ<λ

Dξ(K) if λ is a limit ordinal

Clearly, (Dξ(K))ξ<ω1 is a transfinite decreasing sequence of compact subsets
of X, and so, it is eventually constant. The D-rank of K, denoted by |K|D is
defined to be the least ordinal ξ such that Dξ(K) = Dξ+1(K). For simplicity
of notation, in the sequel we will use D|K|D(K) = D∞(K).

Given X and Y two Polish space, a map D : Y ×K(X) −→ K(X) is said
to be a parameterized derivate if for any y ∈ Y the map

Dy : K(X) −→ K(X)

defined by
Dy(K) = D(y,K)

is a derivative on K(X).

The following result, due to Kechris and Woodin (see [8]), it is really
useful.

Theorem 4.3. Let X and Y be Polish spaces and D : Y ×K(X) −→ K(X)
be a parameterized derivative. Assume that D is Borel. Then the set

ΩD = {(y,K) ∈ Y ×K(X) : D∞y (K) = ∅}

is a Π1
1 set and the map

(y, K) 7−→ |K|Dy

is a Π1
1-rank on ΩD.

For the future, it will be useful the following variation

Theorem 4.4. Let X be a Polish space and Dn : K(X) −→ K(X) be a
sequence of Borel derivatives on K(X). Then the set

Ω = {K ∈ K(X) : D∞n (K) = ∅, ∀n ∈ ω}

is Π1
1 set and the map

K 7−→ sup{|K|Dn : n ∈ ω}

is a Π1
1-rank on Ω.
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Proof. Let n ∈ ω arbitrary. Let us apply Theorem 4.3 for Y = {n} and
D = Dn, we get that the set ΩDn = {K ∈ K(X) : D∞n (K) = ∅} is Π1

1.

Since Ω =
⋂
n ΩDn , we get that Ω is Π1

1 too.

For sake of notation, we set φ(K) = sup{|K|Dn : n ∈ ω} for every
K ∈ K(X).

Let Y = ω with the discrete topology and consider the map

D : Y ×K(X) −→ K(X)

defined by
D(y,K) = Dn(K)

Then D is a parameterized Borel derivative. By Theorem 4.3, the map

(n,K) 7−→ |K|Dn = |K|Dn

is a Π1
1-rank on ΩD. Let ≤Σ and ≤Π be the associate relations. For every

K ∈ K(X) we have

(H ∈ Ω) and φ(H) ≤ φ(K)⇐⇒ ∀n ∈ ω ∃m ∈ ω with (n,H) ≤Σ (m,K)

⇐⇒ ∀n ∈ ω ∃m ∈ ω with (n,H) ≤Π (m,K).

Hence φ is Π1
1-rank on Ω and the proof is completed.

We close this section by mentioning the following result concerning sets
in product spaces with compact sections. Although it is not related to the
notion of a Π1

1-rank, it is very useful tool for checking that various derivatives
are Borel.

Theorem 4.5. Let X and Y be Polish spaces and A ⊆ Y ×X be such that
for every y ∈ Y the section Ay = {x ∈ X : (y, x) ∈ A} of A at y is compact.
Consider the map ΦA : Y −→ K(X) defined by

ΦA(y) = Ay.

Then the set A is Borel if and only if ΦA is a Borel map.

To show that Theorem, we will need the following

Lemma 4.6. (Kunugui, Novikov)
Let X and Y be Polish spaces and A ⊆ Y × X a Borel be such that every
section Ay is open. Then if {Un}n is any open basis for X,

A =
⋃
n

(Bn × Un),

with Bn Borel in Y .
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Proof. If (y, x) ∈ A, then for some n ∈ ω, x ∈ Un ⊆ Ay. So A =
⋃
n(Yn×Un),

where
Yn = {y ∈ Y : Un ⊆ Ay}

Clearly Yn is a Π1
1 set. If Zn = Yn × Un, then Zn is Π1

1, and A =
⋃
n Zn. By

Lusin separation theorem (see Corollary 1.17), there is a sequence (An)n of
Borel sets with A =

⋃
nAn and An ⊆ Zn.

Let Sn = projY (An) ⊆ Yn. Then Sn is Σ1
1, so by Lusin separation theorem

(Theorem 1.16, applied to Sn and Y c
n ), there is a Borel set Bn with

Sn ⊆ Bn ⊆ Yn.

Then An ⊆ Bn × Un ⊆ Yn × Un = Zn, and so

A =
⋃
n

(Bn × Un).

Proof. (of Theorem 4.5)
We can first assume that X is compact, by replacing it by a compactification
if necessary. By Kunugui-Novikov’s Lemma,

Ac =
⋃
n

(Bn × Un),

where {Un}n is a open basis of X and Bn ⊆ Y is Borel. Thus

y ∈ Ay ⇐⇒ ∀n (y ∈ Bn ⇒ x 6∈ Un).

Put X \ Un = Kn, b(y) = {n ∈ ω : y ∈ Bn}.
Then b : Y −→ 2ω is Borel and Ay =

⋂
n∈b(y) Kn.

The proof that y 7−→ Ay is Borel will be finished one we prove the fol-
lowing

Claim The map S 7−→
⋂
n∈SKn, from 2ω into K(X) is Borel.

It is enough to show that if F ⊆ X is closed, then

P = {S ∈ 2ω :
⋂
n∈S

Kn ∩ F 6= ∅}

is Borel. Let us define

(S, x) ∈ R⇐⇒ ∀n ∈ ω (n ∈ S ⇒ x ∈ Kn) and x ∈ F

Then R ⊆ 2ω×X is closed, so compact. Moreover, P = proj2ω(R) is compact
too. To finish the Claim, it is enough to apply Kuratowski-Ryll-Nardzewski’s
Theorem (see Theorem 1.27).
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Il piacere di vedere ci sprofonda nell’emozione della presenza che ci al-
lontana dal movimento del significato . . . lo sguardo si lacera fra presenza e
sapere, ma da questa lacerazione nasce il pensiero.

B. Noël
Journal du regard



40



Chapter 5

Banach Space Theory: a
glimpse

Recall that, a linear space X is a normed space if to each x ∈ X corresponds
a real number ‖x‖, called the norm of x, which satisfies the conditions:

(i) ‖x|| ≥ 0 for each x ∈ X and ‖x‖ = 0 iff x = 0;

(ii) ‖α · x‖ = |α| · ‖x‖, for every α scalar and x ∈ X;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X.

A complete normed space X is called a Banach space.

For two Banach spaces X, Y , we denote by L(X, Y ) the space of all
bounded linear operators from X to Y (i.e., all maps which are linear and
continuous respect the norm topologies of X and Y ). It is easy to see that
this last space become a Banach space if endowed with the following norm

‖T‖L(X,Y ) = sup
‖x‖X≤1

‖T (x)‖Y .

In particular, if Y = K, the scalar field, we denote by L(X,K) = X∗, usually
called the dual space of X.

For each x∗ ∈ X∗ let Dx∗ = K, and let D =
∏

x∗∈X∗ Dx∗ . Let T : X −→ D
the map defined by

T (x) = (x∗(x))x∗∈X∗ .

Then T is one-to-one embedding of X into D. The weak topology on X is
defined as the topology induced by D via the map T . Similarly, we can
define on X∗ a weaker topology, called the weak∗ topology, which is induced
by D̃ =

∏
x∈X Dx, where Dx = K, for each x ∈ X. It is classical, and easy to
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prove, that the closed unit ball BX∗ of X∗ is weak∗ compact (in the literature
such a result is called the Banach-Alaoglu-Boubaki).

Definition 5.1. Let X be a Banach space. Then X is called:

reflexive if the natural embedding ı : X ↪→ X∗∗ given by

ı(x)(x∗) = x∗(x)

is a isometric isomorphism.

with the Shur property if any weakly convergent sequence in X is norm
convergent (i.e., weak topology and norm topology coincide sequen-
tially).

uniformly convex if for each 0 < ε < 2 there exists a δ(ε) > 0 such that
whenever x, y ∈ X with ‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε, then

‖x+ y

2
‖ ≤ 1− δ(ε).

has the Krein Milman property if for each closed bounded convex subset
C of the unit ball BX of X has an extreme point (remember that an
element x ∈ C is said to be an extreme point of C if whenever there are
x1, x; 2 ∈ C such that x = λx1 + (1 − λ)x2 for some 0 ≤ λ ≤ 1, then
x = x1 = x2).

has the Radon Nikodym property if whenever given a probability space
(Ω,Σ, µ) and a countable additive, µ-continuous measure F : Σ −→ X
of bounded variation, there is a Bochner integrable f : Ω −→ X such
that for each E ∈ Σ, we have

F (E) =

∫
E

f(w)dµ(w)

About the Radon Nikodym property, it is classic the following

Theorem 5.2. Let X be a Banach spaces. Then TFAE

(a) X has the Radon Nikodym property;

(b) Given a probability space (Ω,Σ, µ) and a vector measure G : Σ −→ X
such that ‖G(E)‖ ≤ µ(E), for each E ∈ Σ, there is a (necessarily
essentially bounded) Bochner integrable g : Ω −→ X such that for any
E ∈ Σ,

G(E) =

∫
E

g(ω)dµ(ω);
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(c) Given a bounded linear operator T : L1[0, 1] −→ X, there is a (nec-
essarily essentially bounded) Bochner integrable h : [0, 1] −→ X such
that for any f ∈ L1[0, 1],

Tf =

∫
[0,1]

f(t) h(t) dt;

(d) Any uniformly bounded martingale sequence (Xn,Σn) having values in
X is almost surely convergent;

(e) every non void closed bounded convex subset C of X is dentable, i.e.
given such a C and any ε > 0, there is an xε ∈ C such that

xε /∈ co(C \ {y ∈ C : ‖y − x‖ < ε});

(f) Every non void closed bounded convex subset C of X has a denting point,
i.e. given such a C, there is a point x ∈ C (called a denting point) such
that regardless ε > 0

x /∈ co(C \ {y ∈ C : ‖y − x‖ < ε});

(g) Every non void closed bounded convex subset C of X is the closed convex
hull of its denting points.

Recall that a sequence (xn)n in a Banach space X is said to be a Schauder
basis of X if for every x ∈ X there exists a unique sequence (αn)n of scalars
such that x =

∑
n∈ω αnxn, where we are considering the convergence of the

series in the norm topology of X. A sequence (xn)n is called a basic sequence
if it is a Schauder basis for span{xn : n ∈ ω} (the closed linear span of
(xn)n, i.e. the smallest closed linear subspace containing the sequence).

For a Schauder basis (xn)n we denote by (x∗n)n the sequence of bi-orthogonal
functionals associate to (xn)n. That means

x∗m(xn) = δ(n,m) =

{
1, if n = m
0, otheowise.

For a subset F ⊆ ω, let us denote by PF : X −→ span{xn : n ∈ F}
the projection defined by: if x =

∑
n∈ω αnxn then PF (x) =

∑
n∈F αnxn. The

basis constant of (xn)n is defined as the number sup{‖P{0,...,n}‖ : n ∈ ω}. If
x =

∑
n∈ω αnxn, the support of x is defined to be the set {n ∈ ω : αn 6= 0}.

Definition 5.3. Let (xn)n be a Schauder basis of a Banach space X and
C ≥ 1.
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(i) The basis (xn)n is said to be monotone if its basis constant is 1. It is
said to be bi-monotone if ‖PI‖ = 1 for every interval I of ω;

(ii) The basis (xn)n is said to be C-unconditional if ‖PF‖ ≤ C for every
subset F of ω. The basis (xn)n is said to be unconditional if it is C-
unconditional for some C ≥ 1;

(iii) The basis (xn)n is said to be shrinking if the sequence (x∗n)n of bi-
orthogonal functionals associate to (xn)n is a Schauder basis of X∗;

(iv) The basis (xn)n is said to be boundedly complete if for each sequence
(αn)n of scalars such that supk∈ω ‖

∑k
n=0 αnxn‖ <∞ we have that the

series
∑

n∈ω αnxn converges;

(v) A sequence (vk)k in X is said to be block respect to the basis, if max{n ∈
ω : n ∈ supp(vk)} < max{n ∈ ω : n ∈ supp(vk+1)}.

Two sequence (xn)n and (yn)n, in two Banach space X and Y , respec-
tively, are said to be C-equivalent (in the sequel we shall use the notation
(xn)n ∼C (yn)n), where C ≥ 1, if for every k ∈ ω and every α1, . . . , αk ∈ R
we have

1

C
‖

k∑
n=0

αnyn‖Y ≤ ‖
k∑

n=0

αnxn‖X ≤ C ‖
k∑

n=0

αnyn‖Y

.

The following result asserts that basic sequence are invariant under small
perturbations.

Proposition 5.4. Let X be a Banach space and (xn)n be a semi-normalized
basic sequence in X with basis constant K ≥ 1. If If (yn)ln=0 is a finite
sequence in X such that

‖xn − yn‖ ≤
1

2K
· 1

2n+2

for every n ∈ {0, . . . , l}, then (yn)ln=0 is 2-equivalent to (xn)ln=0

Let us recall that two Banach space X and Y are said to be isometric if
there exists a bounded linear operator T ∈ L(X, Y ) such that ‖T (x)‖ = ‖x‖
for each x inX.

Now we are ready to enunciate two fundamental universality results in
Banach Space Theory.

Theorem 5.5. Let X be a separable Banach space. Then there exists a closed
subspace Y of C(2ω) which is isometric to X.
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Proof. Let K = (BX∗ ,weak∗) be the unit ball of the dual space X∗ endowed
with the weak∗ topology. Since X is separable, then K is a compact metriz-
able space, where the metric that induce the weak∗ topology on BX∗ is the
following

d(x∗, y∗) =
∞∑
n=0

1

2n+1
|x∗(xn)− y∗(xn)|

where (xn)n is a dense sequence in the unite ball of X.

By Theorem 1.4 there exists a continuous surjection f : 2ω −→ K. Let
us define

T : X −→ C(2ω)

by
T (x)(σ) = f(σ)(x), for every σ ∈ 2ω, x ∈ X.

It is easy to check that T is a linear isometric embedding.

Before to go to the other universal space Theorem, we recall some nota-
tion:

for 1 ≤ p ≤ ∞ and a sequence of Banach spaces (Xn)n, we denote by(⊕
n∈ωXn

)
`p

(or simply by
(⊕

n∈ωXn

)
p
), the Banach space of all sequence

(xn)n such that

xn ∈ Xn for all n ∈ ω;[∑
n ‖xn‖

p
Xn

] 1
p <∞.

The second result is due to A. Pelczynski (see [14] or [16])

Theorem 5.6. There exists a space U with a normalized bi-monotone Schauder
basis (un)n such that for every seminormalized basic sequence (xn)n in a Ba-
nach space X there exists L = {l0 < l1 < · · · } ∈ [ω] such that (xn)n is
equivalent to (uln)n and the natural projection PL onto span{un : n ∈ L}
has norm one. Moreover, if U ′ is another space with the above properties,
then U ′ is isomorphic to U .

Proof. Let (dn)n be a countable dense subset of the sphere of C(2ω), and let
(xn)n be a seminormalized basic sequence in a Banach space X. By Theorem
5.5 and Proposition 5.4 there exists L = {l0 < l1 < · · · } ∈ [ω] such that
(xn)n is equivalent to (dln)n. Now, let us construct the space U .

Let Σ denotes the tree on ω consisting of all nonempty strictly increasing
finite sequence. For t = (n0 < . . . < nk) ∈ Σ, we let nt = nk. Fix a bijection
ϕ : Σ −→ ω such that

ϕ(t) < ϕ(s)⇔ t $ s.
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For every t ∈ Σ we define ft ∈ C(2ω) by

ft = dnt .

Let us define U the completion of c00(Σ), space of all sequences (indexed on
Σ) with finite support, under the norm

‖x‖U = sup


∥∥∥∥∥∑
t∈s

x(t)ft

∥∥∥∥∥
C(2ω)

: s is a segment of Σ

 .

According to ϕ, let (un)n be the enumeration of the standard basis (et)t∈Σ

of c00(Σ), i.e.

et(s) =

{
1, if s = t
0, otherwise.

The sequence (un)n defines a normalized bi-monotone Schauder basis of
U .

For every σ ∈ [Σ] we set Lσ = {ϕ(σ|k) : k ≥ 1} ∈ [ω]. If {l0 < l1 < · · · }
is the increasing enumeration of Lσ, then we set Xσ = span{uln : n ∈ ω}.

Let Pσ : U −→ Xσ be the natural projection. Notice that ‖Pσ‖ = 1. By
the assertion at the beginning of the proof, we see that for every seminor-
malized basic sequence (xn)n in a Banach space X, there exists σ ∈ [Σ] such
that if Lσ = {l0 < l1 < · · · }, then (xn)n is equivalent to (uln)n. Hence the
space U has the desired properties.

Suppose that U ′ is another space with the properties described in the
statement of the theorem. Therefore, there are Banach space X and Y such
that

U = U ′ ⊕X and U ′ = U ⊕ Y.

Moreover there exists another space Z such that

U = (U ⊕ U ⊕ · · · )`2 ⊕ Z

Thus

U ⊕ U ∼= U ⊕ (U ⊕ U ⊕ · · · )`2 ⊕ Z ∼= (U ⊕ U ⊕ · · · )`2 ⊕ Z ∼= U

Similarly we have that U ′ = U ′ ⊕ U ′. To finish, it is enough to note that

U ∼= U ′ ⊕X ∼= U ′ ⊕ U ′ ⊕X ∼= U ′ ⊕ U ∼= U ⊕ U ⊕ Y ∼= U ⊕ Y ∼= U ′.
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L’ira é designata diversamente in latino, in greco e ovunque, in ragione
della diversitá delle lingue. Ma l’espressione del viso di un uomo in collera
non é nè latina nè greca. Se qualcuno dice iratus sum, nessun popolo, tranne
il latino, lo capisce. Ma se la collera della sua anima esacerbata gli sale al viso
e ne modifica l’espressione, tutti i presenti dicono “Ecco un uomo in collera”.

Agostino
De doctrina Christiana
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Chapter 6

Families of Banach Spaces

In the following chapter, we are going to describe some useful technique
introduced by B. Bossard in [2].

Let X be a separable Banach space. We endow the set F (X) of all closed
subsets of X with the Effros-Borel structure. By Corollary 1.27 there exists
a sequence dn : F (X) −→ X of Borel maps such that

(i) dn(F ) ∈ F for every F ∈ F (X) and n ∈ ω;

(ii) (dn(F ))n is dense in F , for every F ∈ F (X).

Notice that, a closed subspace F is a linear subspace of X if and only if

(0 ∈ F ) and (∀n,m ∈ ω, ∀p, q ∈ Q we have (6.1)

p dn(F ) + q dm(F ) ∈ F ).

It is easy to see that (6.1) defines a Borel subset of F (X). By Theorem
5.5 the space C(2ω) is isometrically universal for all separable Banach spaces.

For a separable Banach space X we denote by SE(X) the subset of F (X)
consisting of the closed subspace of X. We abbreviate SE(C(2ω)) by SE .
Using this notation, we have already proved that

Proposition 6.1. Let X be a separable Banach space. Then SE(X) is a
Borel subset of F (X) equipped with the Effros-Borel structure.

Let us start to the construction of two auxiliaries Banach spaces following,
in the spirit, to the James tree space (see [6] or [11]).

We denote by c00(T ) the space of finitely supported function from T =
ω<ω to R and by χs : T −→ {0, 1} the characteristic function of {s} for every
s ∈ T . Thus c00(T ) = span{χs : s ∈ T}.
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An admissible choice of intervals is a finite set {Ij : 0 ≤ j ≤ k} of interval
of T such that every branch of T meets at most one of these intervals.

We define the following norms on c00(T ):

‖y‖1 = sup

 k∑
j=0

∥∥∥∥∥∥
∑
s∈Ij

y(s) u|s|

∥∥∥∥∥∥
U



‖y‖2 = sup

 k∑
j=0

∥∥∥∥∥∥
∑
s∈Ij

y(s) u|s|

∥∥∥∥∥∥
2

U


1
2

where the supremum is taken over k ∈ ω and over all admissible choice of
intervals {Ij : 0 ≤ j ≤ k}.

Then we let U1(T ) to be the completion of c00(T ) under the norm ‖ · ‖1

and U2(T ) to be the completion of c00(T ) under the norm ‖·‖2. In the sequel,
for A ⊆ ω<ω, we denote by U1(A) (resp. U2(A)) the closed subspace of U1(T )
(resp. U2(T )) generated by {χs : s ∈ A}.

We are going to give several lemmas useful to understand the structure
of the spaces introduced above.

Lemma 6.2. The sequence {χsi : i ∈ ω} determines a basis for U1(T ) and
U2(T ). For any A ⊆ T , {χsi : si ∈ A} determines a basis for U1(A) and
U2(A).

Proof. We give the proof only for U2(T ). For U1(T ) follows similarly.

Let (λi)i∈ω be a sequence in R, I an interval of T and n, p ∈ ω. Let us
denote by cu the basis constant for the universal basis u = (un)n of U .

Let K : ω −→ ω<ω be an enumeration of ω<ω such that if s $ t then
s < t, where s = K−1(s).

For s ∈ T , (
∑n

i=0 λiχsi)(s) is equal to λs if s ≤ n, and 0 if not. Therefore

‖
∑
s∈I

(
n∑
i=0

λiχsi)(s) u|s|‖U = ‖
∑
s∈I
s≤n

λsu|s|‖U ≤ cu ‖
∑
s∈I

s≤n+p

λsu|s|‖U

= cu ‖
∑
s∈I

(

n+p∑
i=0

λiχsi)(s) u|s|‖U

since for s, t ∈ I, then t k s if and only if t ≥ s.

Let {Ij : 0 ≤ j ≤ k} be an admissible choice of intervals. We have
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k∑
j=0

‖
∑
s∈Ij

(
n∑
i=0

λiχsi)(s) u|s|‖2
U ≤ c2

u

k∑
j=0

‖
∑
s∈I

(

n+p∑
i=0

λiχsi)(s) u|s|‖2
U .

Thus ‖
∑n

i=0 λiχsi‖2 ≤ cu ‖
∑n+p

i=0 λiχsi‖2 and {χsi : i ∈ ω} is a basic se-
quence.

Lemma 6.3. Let b be a branch of T . Then

(i) The space U1({s : s & b} = U1(b) and U2(b) are both isomorphic to U .

(ii) If θ ∈ T and if b is a branch of θ, then for r ∈ {1, 2} Ur(b) is comple-
mented in Ur(θ).

Proof. Let r ∈ {1, 2}.
(i) Since {χb|j : j ∈ ω} is a basis of Ur(b), it is enough to prove that u

(the universal basis) is equivalent to {χb|j : j ∈ ω}.
Let (λj)

n
j=0 ∈ R<ω. We have

‖
n∑
j=0

λjχb|j‖r = sup

{
‖
∑
s∈I

(
n∑
j=0

λjχb|j)(s) u|s|‖ : I interval, I ⊆ {s : s & b}

}

= sup{‖
m∑
j=l

λjuj‖ : 0 ≤ l ≤ m ≤ n}.

Thus

‖
n∑
j=0

λjuj‖U ≤ ‖
n∑
j=0

λjχb|j‖r ≤ 2cu ‖
n∑
j=0

λjuj‖U

(ii) Let y =
∑

i∈ω y(si)χsi be an element of Ur(θ). We have

‖
∑
i∈ω
si∈b

y(si)χsi‖r = sup

{
‖
∑
s∈I

y(s) u|s|‖ : I interval, I ⊆ {s : s & b}

}

≤ ‖y||r

Lemma 6.4. Let (Ai)i∈ω be a sequence of subsets of T such that every branch
meets at most one of these subsets. Then for r ∈ {1, 2} the spaces

Ur(
⋃
i∈ω

Ai) and (
⊕
i∈ω

Ur(Ai))`r are isometric
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Proof. We give the proof for r = 2. The other case follows similarly.

Pick y ∈ span
{
χs : s ∈

⋃
i∈ω Ai

}
. We let yi =

∑
s∈Ai

y(s)χs. Since the
set {yi : i ∈ ω and yi 6= 0} is finite, there is m ∈ ω such that y =

∑m
i=0 yi. To

finish the proof, it is enough to show the following

Claim ‖y‖2
2 =

∑m
i=0 ‖yi‖2

2.

Indeed, let {Ij : 0 ≤ j ≤ k} be an admissible choice of intervals. We set,
for 0 ≤ j ≤ k and 0 ≤ i ≤ m, Ij(y) =

∑
s∈Ij y(s)u|S| and Mi = {j ∈ ω : 0 ≤

j ≤ k, Ij ∩ Ai 6= ∅}. The largest interval with ends in Ij ∩ Ai is denoted by
J ij . For any i ∈ ω, {J ij : j ∈Mi} is an admissible choice of intervals, thus

k∑
j=0

‖Ij(y)‖2 =
m∑
i=0

∑
j∈Mi

‖J ij(yi)‖2 ≤
m∑
i=0

‖yi‖2
2.

It follows by taking the supremum over admissible choices of intervals that

‖y‖2
2 ≤

m∑
i=0

‖yi‖2
2.

Now, for any 0 ≤ i ≤ m, let {I ij : 0 ≤ j ≤i} be an admissible choice of

intervals. We denote by Ĩ ij the largest interval with ends in I ij ∩ Ai. Then

{Ĩ ij : 0 ≤ i ≤ m, 0 ≤ j ≤ ki} is an admissible choice of intervals, because
every branch of T meets at most one of the Ai’s. For any i

ki∑
j=0

‖I ij(yi)‖2 =

ki∑
j=0

‖Ĩ ij(yi)‖2 =

ki∑
j=0

‖I ij(y)‖2,

m∑
i=0

ki∑
j=0

‖I ij(yi)‖2 =
m∑
i=0

ki∑
j=0

‖Ĩ ij(y)‖2 ≤ ‖y‖2
2

thus
m∑
i=0

‖yi‖2
2 ≤ ‖y‖2

2.

The next lemma is classical for functional analysts, and it is left as simple
exercise.

Lemma 6.5. Let (Xj)j∈ω be a sequence of Banach spaces.

(i) if all Xj’s is reflexive, then (
⊕

j∈ωXj)`2 is reflexive;
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(ii) if all Xj’s has the Schur property , then (
⊕

j∈ωXj)`1 has the Schur
property.

The following result is really constructive.

Theorem 6.6. Let θ ∈ T .

(i) If θ is ill founded, then U1(θ) and U2(θ) are isomorphic to U , thus
universal;

(ii) If θ is well founded, then U2(θ) is reflexive, and U1(θ) has the Schur
property.

Proof. (i) If θ is ill founded, we pick b a branch of θ. By Lemma 6.2 and
Lemma 6.3, U1(θ) and U2(θ) are Banach space with a basis, which contain a
complemented copy of U(b) = U . Therefore, they contains a complemented
copy of every Banach space with a basis. By Theorem 5.6 both spaces are
isomorphic to U .

(ii) For θ ∈ T , s ∈ T and i ∈ ω, we define

s a θ = {s a t : t ∈ θ}, θi = {t ∈ T : (i) a t ∈ θ}.

Since Ur(θ) = Ur(∅ a θ), to prove the theorem, it is enough to show the
following

Claim If θ is well founded, then for any s ∈ T , U1(s a θ) has the Schur
property, and U2(s a θ) is reflexive.

We will show the Claim using transfinite induction on ht(θ).

We assume that for every tree τ ∈ T such that ht(τ) < α < ω1, U1(s a τ)
has the Schur property and U2(s a τ) is reflexive for any s ∈ T .

Let θ such that ht(θ) = α, and for s ∈ T let Ns = {i ∈ ω : s a (i) ∈ θ}.
We let Ai = s a (i) a θi for i ∈ Ns, so that ∪i∈NsAi = s a (θ \ {s}) and
every branch of T meets at most one of the Ai’s. If i ∈ Ns then ht(θi) < α,
thus U1(Ai) has the Schur property, and U2(Ai) is reflexive. By Lemma 6.4,
we have

Ur(s a (θ \ {s})) = Ur(
⋃
i∈Ns

Ai) = (
⊕
i∈Ns

Ur(Ai))`r ,

thus by Lemma 6.5, U1(s a (θ \ {s})) has the Schur property and U2(s a
(θ \ {s})) is reflexive.

Since {χsj : j ∈ ω, sj ∈ s a θ} is a basis of Ur(s a θ) with the first
element χs and the other element generate Ur(s a (θ \ {s})). Then, we have
that Ur(s a θ) ∼= R × Ur(s a (θ \ {s})). Thus U1(s a θ) has the Schur
property and U2(s a θ) is reflexive.
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Lemma 6.7. The map ϕ : T −→ SE defined by

ϕ(θ) = U2(θ)

is Borel.

Proof. Let O be an open subset of C(2ω). It is enough to show that Ω =
{θ ∈ T : U2(θ) ∩O 6= ∅} is Borel.

Since {χsi : i ∈ ω, si ∈ θ} defines a basis of U2(θ), we have

U2(θ)∩O 6= ∅ ⇔ ∃λ ∈ Q<ω such that
n∑
i=0

λiχsi ∈ O and if λi 6= 0 then si ∈ θ.

Let Λ = {λ ∈ Q<ω :
∑n

i=0 λiχsi ∈ O}. Then

Ω =
⋃
λ∈Λ

⋂
i∈supp(λ)

{θ ∈ T : si ∈ θ}

thus Ω is Borel since {θ ∈ T : si ∈ θ} is an open and closed subset.

The following are useful.

If X is a separable Banach space, we will denote by 〈X〉 the equivalent
class {Y ∈ SE : Y ∼= X} of the isomorphism relation ∼=.

Proposition 6.8. The class 〈U〉 is not Borel and the relation ∼= is not Borel.

Proof. Since ϕ−1(〈U〉) = IF and IF is not Borel (see 2.2), it follows that
〈U〉 is not a Borel class and consequently ∼= is not a Borel relation.

The proof of the next lemma is left to the reader.

Lemma 6.9. Let X be a separable Banach space.

(i) {(F, y) : y ∈ F} is Borel in F (X)×X;

(ii) {(Y, (yn)n) : span(yn)n = Y } is Borel in SE(X)×Xω;

(iii) {( (xn)n, (yn)n ) : (xn)n ∼ (yn)n} is Borel in Xω ×Xω;

(iv) {(Y, Z) : Y ⊆ Z} is Borel in SE(X)× SE(X).

Proposition 6.10. The isomorphism relation ∼= is analytic in SE ×SE and
has no analytic section.
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Proof. First we notice that, for two separable Banach spaces X and Y , X ∼=
Y if and only if there are x ∈ Xω and y ∈ Y ω such that x ∼ x and span{x} =
X and span{y} = Y .

By Lemma 6.9, the subset {(X, Y, x, y) : span{x} = X, span{y} =
Y, x ∼ x} is Borel in SE × SE × C(2ω)× C(2ω).

Since the image of this set under the natural projection onto SE × SE
is just {(X, Y ) : X ∼= Y }, we get that ∼= is analytic. The the class 〈U〉 is
analytic not Borel.

The family of Separable Reflexive Banach spaces

The next Theorem is a generalization of a deep result of J. Bourgain (see
[3]).

Theorem 6.11. Let A be an analytic family of separable Banach spaces,
stable under isomorphism, which contains all separable reflexive spaces. Then
A contains a space which is universal for all separable Banach spaces.

Proof. Let ϕ the map defined in Lemma 6.7 above. We already know that, if
θ is well founded then, by Theorem 6.6, φ(θ) = U2(θ) is reflexive. Therefore,
ϕ−1(A) is analytic and contains WF . Since WF is far away to be analytic,
there exists θ0 ∈ ϕ−1(A) which is ill founded. Thus, by Theorem 6.6 once
again, ϕ(θ0) = U2(θ0) is an element of A which is isomorphic to U .

Corollary 6.12. The family of all separable reflexive Banach spaces is co-
analytic and not Borel.

Proof. It is enough notice that this family cannot contains U (actually U
contains a complemented copy of `1). Thus, by Theorem 6.11, this family
cannot be analytic, thus not Borel.

Theorem 6.13. (J. Bourgain, 1980)
If X is separable and universal for the set of all separable reflexive Banach
spaces, then X is also universal for the class of all separable Banach spaces.

Proof. Since if X is universal for the set of all separable reflexive Banach
space then the family A, of all spaces which are isomorphic to a subspace of
X, has to be analytic. Therefore by Theorem 6.11 X has to be universal.

Actually, Bourgain’s theorem was made to show an improvement of an-
other celebrate result previously obtained. In the Scottish book, Banach and
Mazur ([19, Problem 49]) arise the question of the existence of a universal
Banach space more fine than C(2ω): reflexive.
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This was solved in a elegant way in 1968 by W. Slenk, introducing a new
tool in Geometry: still called the Slenk’s index (see [17]).

Theorem 6.14. (W. Slenk, 1968)
If X is a Banach space universal for all separable reflexive Banach space,
then X∗, the dual of X, is non separable.

Proof. Let us give the idea of the proof.

For a weak∗ compact F of X∗ and ε > 0 let us define:

F ′ε = {f ∈ X∗ : there exist (xm)m ⊆ BX and(fm)m ⊆ F such that

fm
w∗→ f,

xm → 0,

lim sup
m
|fm(xm)| ≥ ε}

We denote

F 0
ε = F

Fα+1
ε = (Fα

ε )′ε

Fα
ε =

⋂
β<α

F β
ε , if α is a limit ordinal.

Moreover, let us set

Sε(F ) = sup{α < ω1 : Fα
ε 6= ∅}.

Let us denote by Sε(X) = Sε(BX∗).

It can be shown that, if X∗ is separable, there exists an ordinal number
α < ω1 such that

Fα
ε 6= ∅ and Fα+1

ε = ∅.
The proof is articulated in three step.

In the first step is proved that if X∗ is separable, then

S(X) = sup
n
S 1

n
(X) < ω1.

S(X) is called the Slenk index of X.

It is showed that S(X) is monotone: if a Banach space Y is isomorphic
to a closed subspace of X then

S(Y ) ≤ S(X).
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The last step consist to show that for every countable ordinal α there exists
a separable Banach reflexive space Xα such that

S(Xα) ≥ α. (6.2)

This would finish the proof. Let us see the last step:

For two Banach space X and Y , let us denote by (X × Y )1 (respectively
(X × Y )∞) the Cartesian product of Banach spaces X and Y with the norm

‖(x, y)‖1 = ‖x‖+ ‖y‖
(respectively ‖(x, y)‖∞ = max(‖x‖, ‖y‖)).

If (Xt)t∈T is a family of Banach spaces, then the symbol `2(Xt)t∈T denote
the Banach space of all function x(·) from X into the product

∏
t∈T Xt such

that

‖x(·)‖2 = (
∑
t∈T

‖x(t)‖2)
1
2 <∞.

It is not hard to show that, if X∗ is separable

Sε((X × `2)1) ≥ Sε(X) + 1.

Now, let us set

X0 = `2

Xα+1 = (Xα × `2)1

Xα = `2(Xβ)β<α, if α is a limit ordinal.

Clearly, the spaces Xα defined above are reflexive and separable. By transfi-
nite induction, we prove that the family (Xα)α<ω1 satisfies (6.2).

Obviously, (6.2) holds for α = 0. Suppose α is a limit ordinal and for
0 ≤ β < α (6.2) holds, using the fact that Xα = `2(Xβ)β<α contains a
subspace isometrically isomorphic to Xβ, by the second step we get

Sε(Xα) ≥ sup
β<α

Sε(Xβ) ≥ sup
β<α

β = α.

Finally, if (6.2) holds for an ordinal α < ω1 then

Sε(Xα+1) = Sε((Xα × `2)1) ≥ Sε(Xα) + 1 ≥ α + 1.
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The family of Separable Uniformly Convex Banach spaces

A Banach space (X, ‖ · ‖) is said to be uniformly convex if for every ε > 0
there exists δ > 0 such that for every x, y ∈ SX with ‖x−y‖ ≥ ε we have that
‖x+y

2
‖ ≤ 1 − δ. It is a classical result that every uniformly convex Banach

space is reflexive.
Using the Kuratowski-Rill Nardzewski Theorem 1.27, can be shown that

if X is a separable Banach space then there exists a sequence of Borel maps

Sn : SE(X) −→ X

such that

(a) if Y = {0}, then Sn(Y ) = 0 for every n ∈ ω;

(b) If Y ∈ SE(X) with Y 6= {0}, then Sn(Y ) ∈ SY for every n ∈ ω;

(c) the sequence Sn(Y ))n is norm dense in the sphere SY of Y .

Unlike the family of separable reflexive Banach spaces, we have

Theorem 6.15. The family of separable uniformly convex Banach spaces is
Borel.

Proof. Let Sn : SE −→ C(2ω) as above.

It is enough to note that

X ∈ SE is uniformly convex⇔ ∀n ∈ ω \ {0}∃m ∈ ω \ {0} such that

[∀k, l ∈ ω we have

‖Sk(X)− Sl(X)‖ ≥ 1

n
⇒ ‖Sk(X) + Sl(X)

2
‖ ≤ 1− 1

m
]

The family of Separable Banach space isomorphic to `2

As before, let us denote by 〈`2〉 the class of all Banach space which are
isomorphic to the space `2.

A separable Banach space X is of type 2 if there is some M > 0 such that
for any finite sequence (xj)

n
j=0 of elements of X we have

1

2n

∑
εj=±1

‖
n∑
j=0

εjxj‖ ≤M (
n∑
j=0

‖xj‖2)
1
2 .
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A separable Banach space X is of cotype 2 if there is some M > 0 such that
for any finite sequence (xj)

n
j=0 of elements of X we have

1

2n

∑
εj=±1

‖
n∑
j=0

εjxj‖ ≥
1

M
(
n∑
j=0

‖xj‖2)
1
2 .

The following result is due to S. Kwapień

Theorem 6.16. ([10])
A separable Banach space is isomorphic to `2 if and only if is of type 2 and
cotype 2.

Now, for any v ∈ C(2ω)ω, the space span(v) is of type 2 if and only if
there is some M ∈ Q+ such that for any n ∈ ω and any (λj)nj=0 ∈ (Q<ω)n+1,
we have

1

2n

∑
εj=±1

‖
n∑
j=0

εjλ
j · v‖ ≤M (

n∑
j=0

‖λj · v‖2)
1
2 .

where λj ·v =
∑

i λ
j
ivi. Consequently, {v ∈ C(2ω)ω : span(v) is of type 2}

is Borel. Similarly, can be proved that {v ∈ C(2ω)ω : span(v) is of cotype 2}
is Borel. Using Kwapień therem, we have the following

Theorem 6.17. The class 〈`2〉 is Borel.

It follows from Bourgain’s work (see [4]) that the equivalent classes 〈Lp(0, 1)〉
when 1 < p <∞ and p 6= 2 are not Borel.

Question 6.18. Is there some separable Banach space X such that X is not
isomorphic to `2 and the equivalent class 〈X〉 is Borel?

The family of Separable Reflexive Banach spaces: an-
other approach

Let X ∈ SB, ε > 0 and K ≥ 1. We define a tree T = T (X, ε,K) on SX the
shere of X, given by

(xn)ln=0 ∈ T ⇐⇒ (xn)ln=0 is K-Schauder and ∀a0, . . . , al ∈ R+

with
l∑

n=0

an = 1 we have ‖
l∑

n=0

anxn‖ ≥ ε
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where a finite sequence (xn)ln=0 is said to be K-Schauder if

‖
l∑

n=0

anxn‖ ≤ K · ‖
l∑

n=0

anxn‖

for every 0 ≤ m ≤ l and every a0, . . . , an ∈ R.

Notice that if 0 < ε′ < ε and 1 ≤ K < K ′, then the tree T (X, ε,K) is a
downwards closed subtree of T (X, ε′, K ′).

Theorem 6.19. Let X ∈ SB. Then X is reflexive if and only if for every
ε > 0 and every K ≥ 1 the tree T (X, ε,K) is well founded.

Proof. Let ε > 0 and K ≥ 1, and assume, first, that the tree T = T (X, ε,K)
is not well founded.

Then, there exists a sequence (xn) in X such that (xn)ln=0 ∈ T for every
l ∈ ω. Notice that (xn) is a normalized basic sequence. By Rosenthal ’s
Dichotomy [15], either there exists L = {l0 < l1 > . . .} ∈ [ω] such that
(xln) is equivalent to the standart unit vector basis of `1, or there exist
M = {m0 < m1 < . . .} ∈ [ω] and x∗∗ ∈ X∗∗ such that the sequence (xmn)
is weak∗ convergent to x∗∗. In the first case, we imediately get that X is not
reflexive. In the second case we distingush two subcases. If x∗∗ ∈ X∗∗\X, then
clearly X is not reflexive. So assume thta x∗∗ ∈ X. As (xmn) is basic, we see
that x∗∗ = 0 (i.e., the sequence is weakly null). By Mazur’s Theorem, there
exists a finite convex combination z of {xmn : n ∈ ω} such that ‖z‖ < ε.
This is clearly impossible for the definition of the tree T = T (X, ε,K). Then,
X has to be not reflexive.

Conversely, assume that X is not reflexive. There exists x∗∗ ∈ X∗∗ \ X
with ‖x∗∗‖ = 1. If `1 embeds into X, then we can find ε and K such that
T (X, ε,K) is not well founded. If `1 doesn’t embed into X, then by Odell-
Rosenthal’s theorem [13] there exists a sequence (zn) in BX which is weak∗

convergent to x∗∗. We may select x∗ ∈ X∗ with ‖x∗‖ ≤ 1 and L ∈ [ω]
such that x∗(zn) ≥ 1

2
for every n ∈ L. Notice that 1

2
≤ ‖zn‖ ≤ 1 for every

n ∈ L. By a classical result of Bessaga-Pelczynski (see [5], p. 41) there exists
M ∈ [L] such that the sequence (zmn) is basic with basis constant K ≥ 1.
We set xn = zmn

‖zmn‖
for every n ∈ ω. Then (xn) is a normalized basic sequence

with basic constant K. Moreover, for every l ∈ ω and every a0, . . . , al ∈ R+

with
∑l

n=0 an = 1 we have

‖
l∑

n=0

anxn‖ ≥
l∑

n=0

an
x∗(zmn)

‖zmn‖
≥ 1

2

It follows that (xn)ln=0 set in T (X, 1
2
, K) for every l ∈ ω. That means T =

T (X, 1
2
, K) is not well founded.
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Let Sn : SB −→ C(2ω) be the sequence of Borel map as in Theorem 6.15.
We define the tree T (X, j, k) on ω by the rule

(n0, . . . , nl) ∈ T (X, j, k)⇐⇒ (Sn0(X), . . . , Snl
(X)) ∈ T (X,

1

j
, k).

We have the following

Lemma 6.20. For every j, k ≥ 1 the map X 7−→ T (X, j, k) is Borel.

Proof. It is enough to show that for every t = (n0, . . . , nl) ∈ ω<ω the set

At = {X ∈ SB : t ∈ T (X, j, k)}

is Borel.

We have

A ∈ At ⇐⇒(Sn0(X), . . . , Snl
(X)) is k-Schauder and ∀a0, . . . , al ∈ Q+

with
l∑

i=0

ai = 1 we have ‖
l∑

i=0

aiSni
(X)‖ ≥ 1

j

As the sequence (Sn) consists of Borel maps, we conclude that the set At is
Borel.

With the family of trees {T (X, j, k) : j, k ≥ 1}we produce a tree T (X)
on ω defined by the rule

p a t ∈ T (X)⇐⇒ p = 〈j, k〉 and t ∈ T (X, j, k)

We can conclude with the following

Theorem 6.21. The family of all separable reflexive Banach space is a Π1
1

set in F(C(2ω)) and the map

X 7−→ ht(T (X))

is a Π1
1-rank map on SBR.

The family of Separable Banach spaces with separable
dual

This section is devote to the study of the set

SD = {X ∈ SB : X∗ is separable}.
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Let us recall, once again, the notion of Slenk’s index.

Let Z be a separable Banach space. Also let ε > 0 and K be a weak∗

cmpact subset of BZ∗ . We define

sε(K) = K \
⋃
{V ⊆ Z∗ : V is weak∗ open and ‖ · ‖ − diam(K ∩ V ) ≤ ε}

where
‖ · ‖ − diam(A) = sup{‖z∗ − y∗‖ : z∗, y∗ ∈ A}

for every A ⊆ Z∗.

Notice that sε(K) is weak∗ closed, sε(K) ⊆ K and sε(K1) ⊆ sε(K2) if
K1 ⊆ K2. It follows that sε is a derivate on the set all weak∗ compact subsets
of (BZ∗ , w

∗). Hence, by transfinite recursion, for every weak∗ compact subset
K of BZ∗ we define the iterate derivatives on K by

s0
ε(K) = K

sξ+1
ε (K) = sε(s

ξ
ε(K))

sλε (K) =
⋂
ξ<λ

sξε(K) if λ is limit.

Let SZε(K) the least ordinal ξ such that sξε(K) = ∅, and sZε(K) = ω1

otherwise. The Slenk’s index of Z is defined by

SZ(Z) = sup{SZε(BZ∗) : ε > 0}.

It is easy to see that if 0 < ε1 < ε2, then SZε1
(K) ≥ SZε2

(K), and so

SZ(Z) = sup{SZ 1
n

(BZ∗) : n ≥ 1}.

for every separable Banach space Z. Let us recall the main properties of the
Slenk’s index

Proposition 6.22. Let Z and Y be two separable Banach spaces. Then the
following hold:

(i) If Y is isomorphic to Z, then SZ(Y ) = SZ(Z);

(ii) If Y is isomorphic to a closed subspace of Z, then SZ(Y ) ≤ SZ(Z);

(iii) The dual Z∗ of Z is separable if and only if SZ(Z) < ω1.

Part (i) and (ii) are easy consequence of the definition. Part (iii) follows
from
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Lemma 6.23. Let Z be a separable Banach space and K be a non-empty
weak∗ compact subset of BZ∗. If K is norm separable, then for every ε > 0
there exists a weak∗ open subset V of Z∗ such that K ∩ V 6= ∅ and

‖ · ‖ − diam(K ∩ V ) ≤ ε.

Proof. Let us consider a compatible metric ρ for (BZ∗ , w
∗), with ρ−diam(BZ∗) ≤

1. Suppose the assertion of the lemma is false. Then we may construct a fam-
ily (Vt) (t ∈ 2<ω) of relatively weak∗ open subsets of K such that for every
t ∈ 2<ω, setting Ft to be the weak∗ closure of Vt, the following hold

(a) Fta0 ∩ Fta1 = ∅

(b) Fta0 ∪ Fta1 ⊆ Vt

(c) ρ− diam(Vt) ≤ 2−|t|

(d) for every n ≥ 1, every t, s ∈ 2n with t 6= s and every pair (z∗, y∗) ∈
Vt × Vs we have ‖z∗ − y∗‖ > ε.

We set P =
⋃
σ∈2ω

⋂
n∈ω Vσ|n.

By (a), (b) and (c) we have that P is perfect subset of K. By (d) we get
that ‖z∗ − y∗‖ > ε for every z∗, y∗ ∈ P with z∗ 6= y∗. That implies that K is
not norm-separable, a contradiction.

Now, we want to show, first, that the Slenk’s index is a Π1
1-rank map on

the set of all compact and norm separable subset of E = (BZ∗ , w
∗).

We fix (Vm)m a basis of open set in (BZ∗ , w
∗). For every n,m ∈ ω define

the map
Dn,m : K(E) −→ K(E)

by

Dn,m(K) =

{
K \ Vm, if K ∩ Vm 6= ∅ and ‖ · ‖ − diam(K ∩ Vm) ≤ 1

n+1
;

K, otherwise.

Notice that Dn,m is a derivative on K(E). Now define

Dn : K(E) −→ K(E)

by

Dn(K) =
⋂
m

Dn,m(K)

. Observe that

Dn(K) = K \
⋃
{V ⊆ E : V is open and ‖ · ‖ − diam(K ∩ V ) ≤ 1

n+ 1
}

Clearly Dn is a derivative too.
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Lemma 6.24. For every n ∈ ω, the map Dn is Borel.

Proof. For every m ∈ ω let us consider

Am = {K ∈ K(E) : K ∩ Vm 6= ∅ and ‖ · ‖ − diam(K ∩ Vm) ≤ 1

n+ 1
}

As the norm of Z∗ is lower semicontinuous, it follows that Am is a Borel
subset of K(E). Now observe that

Dn,m(K) = K if K 6∈ Am and

Dn,m(K) = K \ Vm if K ∈ Am.

This easly implies that the map Dn,m is Borel for every m ∈ ω.

Now consider the map

F : (K(E))ω −→ (K(E))ω

defined by
F ((Km)) = (Dn,m(Km)).

Then F is Borel. In particular the map
⋂

: (K(E))ω −→ K(E) defined by⋂
((Km)) =

⋂
mKm is Borel too. Finally, considering the continuous map

I : K(E) −→ (K(E))ω defined by I(K) = (Km) with Km = K for each
m ∈ ω, we conclude that Dn is Borel from the equality

Dn(K) =
⋂

(F (I(K)))

By Theorm4.4, we have that

ΩZ = {K ∈ K(E) : D∞n (K) = ∅ ∀n ∈ ω}

is Π1
1, and the map

K 7−→ sup{|K|Dn : n ∈ ω}

is a Π1
1-rank map.

Observe that, by the Lemma 6.23,

ΩZ = {K ∈ K(E) : K is norm-separable}

and
SZ(K) = sup{|K|Dn : n ∈ ω}

for K in ΩZ .
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Theorem 6.25. The set SD is Π1
1 and the map

X 7−→ SZ(X)

is a Π1
1-rank map.

Proof. First, let us consider Z = `1 and H = (B`∞ , w
∗). From what we have

said above
Ω = {K ∈ K(H) : K is norm-separable}

is Π1
1 and the map k 7−→ sup{|K|Dn : n ∈ ω} is Π1

1-rank map on Ω.

Let D be the Borel subset of SB ×H defined as

(X, f) ∈ D ⇐⇒ f ∈ KX = {fx∗ : x∗ ∈ BX∗},

where

fx∗ = (
x∗(d0(X))

‖d0(X)‖
, . . . ,

x∗(dn(X))

‖dn(X)‖
, . . .)

with (dn) the Borel maps form the Kuratowski and Ryll- Nardzewski’s the-
orem.

For every X ∈ SB the section DX = {f : (X, f) ∈ D} is compact and
equals to the set KX . By Theorem 4.5 the map

Φ : SB −→ K(H)

defined by
Φ(X) = KX

is Borel. Notice that
X ∈ SD ⇐⇒ Φ(X) ∈ Ω.

It follows that the set SD is Π1
1 and the map

X 7−→ sup{|KX |Dn : n ∈ ω}

is Π1
1-rank on SD.

To finish, it is enough to note that for every X ∈ SD and n ∈ ω we have
|KX |Dn = SZ 1

n

(BX∗). Hence

sup{|KX |Dn : n ∈ ω} = sup{SZ 1
n

(BX∗) : n ≥ 1} = SZ(X).
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